Som besökare på Hamsterpaj samtycker du till användandet av s.k. cookies för att förbättra din upplevelse hos oss. Jag förstår, ta bort denna ruta!
Annons

Ma c, derivata & tredjegradsekvation

Skapad av Syndafloden, 2010-12-09 10:36 i Naturvetenskap

2 299
5 inlägg
0 poäng
Syndafloden
Visningsbild
P 33 Karlstad Hjälte 10 705 inlägg
0
Hej, har en uppgift jag behöver hjälp med.


y = x^3 -3x

För vilka värden på x är y= 0

För vilka x är y' = 0

För vilka x är y' = 0

för vilka x är både y < 0 och y' < 0

Vissa kan jag lösa grafiskt, andra kan jag gissa mig till grafiskt, men vill lösa dem algebraiskt med.

Någon som kan hjälpa mig? :)

HEH, TIME FOR A BIT OF A ROUGH AND TUMBLE

Är reklamen ivägen? Logga in eller registrera dig så försvinner den!

Felix
Visningsbild
P 34 Lidingö Hjälte 6 171 inlägg
0

Svar till Erotisk_Eruption [Gå till post]:
Första delen är rätt enkel, bara att bryta ut x.
x(x^2-3) = 0

Så ser du att x = 0; +√3; -√3

Förstaderivatan av x^3-3x är:
3x^2-3 = 0

x = 1; -1; borde du se direkt.

Andraderivatan av 3x^3-3x är:
6x

6x = 0; linjär..

Om vi börjar med y' så är det en andragradskurva. När andragradskurvor har en x^2-term som är positiv kommer det alltid att finnas en minpunkt. Det innebär att y > 0 när x ligger mellan rötterna.

y' < 0 när -1 < x > 1

Om vi både tittar på värdena för y' och y ser vi att:
y' är positiv när x < -1
y' är 0 när x = -1
y' är negativt när -1 > x < 1
y' är 0 när x = 1
y' är positiv när x > 1

Det innebär att y "kommer nerifrån" och
y = 0 när x = -√3
Har en lokal maxpunkt när x = -1
y = 0 när x = 0
Har en lokal minpunkt när x = 1
y = 0 när x = √3

Alltså är y < 0 när x < -√3 och 0 < x > √3
y' < 0 när -1 < x > 1

Svaret är därför 0 < x > 1

You're awesome!

Syndafloden
Visningsbild
P 33 Karlstad Hjälte 10 705 inlägg
Trådskapare
0

Svar till Felix [Gå till post]:
Första uppgiften lyckades jag lösa, och få ut 0 & +/- 1.73.
Ditt svar är mer utförligt dock, vilket är bra.

Andra uppgiften var enkel att lösa grafiskt (vilket tydligen var målet med uppgiften), men jag har kommit så långt som till att lista ut att det är lokalt max/min som eftersökes : )

Nu är jag lite inte-helt-med-i-matchen, men vad innebär första och andra-derivata?

De andra svaren har jag inte hunnit applicera än, dock tänker jag minnas ditt inlägg som referens, tack för svaren : D

HEH, TIME FOR A BIT OF A ROUGH AND TUMBLE


Forum » Samhälle & vetenskap » Naturvetenskap » Ma c, derivata & tredjegradsekvation

Ansvariga ordningsvakter:

Användare som läser i den här tråden just nu

1 utloggad

Skriv ett nytt inlägg

Hej! Innan du skriver om ett potentiellt problem så vill vi påminna dig om att du faktiskt inte är ensam. Du är inte onormal och världen kommer inte att gå under, vi lovar! Så slappna av och gilla livet i några minuter - känns det fortfarande hemskt? Skriv gärna ner dina tankar och frågor, vi älskar att hjälpa just dig!

Den här tråden är äldre än Rojks drömtjej!

Det senaste inlägget i den här tråden skrevs för över tre månader sedan. Är du säker på att du vill återuppliva diskussionen? Har du något vettigt att tillföra eller passar din fråga i en ny tråd? Onödiga återupplivningar kommer att låsas så tänk efter en extra gång!

Hjälp

Det här är en hjälpruta

Här får du korta tips och förklaringar om forumet. Välj kapitel i rullningslisten här ovanför.

Rutan uppdateras automagiskt

När du använder funktioner i forumet så visas bra tips här.


Annons
Annons
Annons
Annons